Exercise 50

The table shows values of the viral load V(t) in HIV patient 303, measured in RNA copies/mL, t days after ABT-538 treatment was begun.

t	4	8	11	15	22
V(t)	53	18	9.4	5.2	3.6

(a) Find the average rate of change of V with respect to t over each time interval:

(i)	[4, 11]	(ii)	[8, 11]
(iii)	[11, 15]	(iv)	[11, 22]

What are the units?

(b) Estimate and interpret the value of the derivative V'(11).

Source: Adapted from D. Ho et al., "Rapid Turnover of Plasma Virions and CD4 Lymphocytes in HIV-1 Infection," Nature 373 (1995): 123–26.

Solution

Calculate the average rate of change of V with respect to t over each of the time intervals.

(i)
$$[4,11]$$
 $\frac{V(11) - V(4)}{11 - 4} = \frac{9.4 - 53}{7} = -\frac{218}{35} \approx -6.23 \frac{\text{RNA copies/mL}}{\text{day}}$
(ii) $[8,11]$ $\frac{V(11) - V(8)}{11 - 8} = \frac{9.4 - 18}{3} = -\frac{43}{15} \approx -2.87 \frac{\text{RNA copies/mL}}{\text{day}}$
(iii) $[11,15]$ $\frac{V(15) - V(11)}{15 - 11} = \frac{5.2 - 9.4}{4} = -\frac{21}{20} = -1.05 \frac{\text{RNA copies/mL}}{\text{day}}$
(iv) $[11,22]$ $\frac{V(22) - V(11)}{22 - 11} = \frac{3.6 - 9.4}{11} = -\frac{29}{55} \approx -0.527 \frac{\text{RNA copies/mL}}{\text{day}}$

For the best estimate of the instantaneous rate of change at t = 11, take the average of the average rates taken over [8, 11] and [11, 15], the smallest time intervals about t = 11.

$$\frac{\left(-\frac{43}{15}\right) + \left(-\frac{21}{20}\right)}{2} = -\frac{47}{24} \approx -1.96 \frac{\text{RNA copies/mL}}{\text{day}}$$

This indicates that 11 days after the start of ABT-538 treatment, the HIV viral load in patient 303 is decreasing at a rate of about 1.96 RNA copies/mL per day.